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DISSIPATION AND HIGH DISORDER

BY LE CHEN∗,1, MICHAEL CRANSTON†,
DAVAR KHOSHNEVISAN∗,2 AND KUNWOO KIM∗

University of Utah∗ and University of California-Irvine†

Given a field {B(x)}x∈Zd of independent standard Brownian motions,
indexed by Zd , the generator of a suitable Markov process on Zd ,G, and
sufficiently nice function σ : [0,∞) �→ [0,∞), we consider the influence of
the parameter λ on the behavior of the system,

dut (x) = (Gut )(x)dt + λσ
(
ut (x)

)
dBt (x)

[
t > 0, x ∈ Zd ]

,

u0(x) = c0δ0(x).

We show that for any λ > 0 in dimensions one and two the total mass∑
x∈Zd ut (x) converges to zero as t → ∞ while for dimensions greater

than two there is a phase transition point λc ∈ (0,∞) such that for λ >

λc,
∑

x∈Zd ut (x) → 0 as t → ∞ while for λ < λc,
∑

x∈Zd ut (x) �→ 0 as
t → ∞.

1. Introduction. Let τ denote a probability density function on Zd , and con-
sider the linear operator G defined by

(Gh)(x) = ∑
y∈Zd

[
h(x + y) − h(x)

]
τ(y),(1.1)

for all x ∈ Zd and bounded functions h : Zd → R. We may think of G as the
generator of a rate-one continuous-time random walk X := {Xt }t≥0 on Zd , that is,
X is a compound Poisson process such that X0 = 0, τ(x) = P{XJ = x, J < ∞}
for all x ∈ Zd , and J denotes the first time the process Xt jumps. In order to rule
out trivialities, we will assume that X is genuinely d-dimensional. In particular,
J < ∞ a.s. and τ(x) = P{XJ = x}.

Let {B(x)}x∈Zd denote a field of independent standard Brownian motions, in-
dexed by Zd , and consider the system of Itô stochastic ODEs,

dut (x) = (Gut)(x)dt + λσ
(
ut (x)

)
dBt(x)

[
t > 0, x ∈ Zd]

,(1.2)
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subject to u0(x) := c0δ0(x) for all x ∈ Zd , where c0, λ > 0 are finite and nonran-
dom numerical quantities. We will think of the number c0 as fixed, and of λ as a
tuning parameter which describes the level of the noise.

Here and throughout, we assume that σ : R → R is a deterministic Lipschitz-
continuous function. It follows from the work of Shiga and Shimizu [21] that the
particle system (1.2) has a unique strong solution.

We study the solution to (1.2) under further mild restrictions on the operator
G and the nonlinearity σ . Regarding G, we always assume that τ has mean zero
and compact support; the latter is equivalent to the notion that G is finite range. To
summarize, we have∑

x∈Zd

xj τ (x) = 0 for all 1 ≤ j ≤ d and max‖x‖>R0
τ(x) = 0(1.3)

for some R0 ∈ (1,∞). In order to rule out trivialities, we assume also that
τ(0) < 1. Otherwise, (1.2) describes a countable family of independent and/or
noninteracting one-dimensional Itô diffusions. We also note that the best-studied
example of (1.2) is included here; that is, the case where G is the discrete Lapla-
cian, (Gh)(x) = (2d)−1 ∑

y∈Zd :|y−x|=1 h(y) where |z| := ∑d
j=1 |zj | for all z ∈ Zd .

Other examples abound.
As regards the nonlinearity, we will always assume that

σ(0) = 0 and Lσ := inf
z∈R

∣∣σ(z)/z
∣∣ > 0.(1.4)

The first part of this condition ensures that the solution u to (1.2) is “physical.”
More precisely, the strict inequality ut(x) > 0 holds for all t > 0 and x ∈ Zd al-
most surely; see Georgiou et al. [13], Lemma 7.1. The second is a “moment inter-
mittency condition” [11, 20].

The parabolic Anderson model σ(u) = u has been studied a great deal (see
Carmona and Molchanov [5]) in part because it arises naturally in other disciplines,
and also because it is close to being an exactly-solvable model. In fact, in a few
cases, it is exactly solvable; see Borodin and Corwin [1].

Thanks to a comparison argument ([13], Theorem 5.1), Theorem 1.2 of Shiga
[20] implies that there exists a number λ1 > 0 such that

lim
t→∞ut (x) = 0 a.s. for all x ∈ Zd ,(1.5)

if λ > λ1. One can recast this, somewhat informally, as the assertion that the solu-
tion to (1.2) is locally dissipative under strong disorder; see Carmona and Hu [2]
for the terminology on strong vs. weak disorder.

On the other hand, the theory of Georgiou et al. [13] implies that if d ≥ 3, then
there exists a finite and positive number λ2 such that

lim
t→∞ sup

x∈Zd

ut (x) = 0 a.s.,(1.6)
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whenever λ ∈ (0, λ2). This implies that the solution to (1.2) is uniformly—hence
also locally—dissipative under weak disorder.

Finally, let us mention that when there is no disorder, that is when σ ≡ 0, the so-
lution to the Kolmogorov–Fokker–Planck equation (1.2) is simply ut(x) = P{Xt =
−x}, which goes to zero uniformly in x as t → ∞ thanks to a suitable form of the
local central limit theorem.

Thus, we see that local dissipation is a generic property of (1.2), regardless of
the strength of the disorder in (1.2). By contrast, the main result of this paper shows
that global dissipation essentially characterizes the presence of strong disorder. In
order to describe our result, consider the total mass process

mt(λ) := ‖ut‖�1(Zd ) := ∑
x∈Zd

∣∣ut(x)
∣∣ [t ≥ 0].

It is well known that t �→ mt(λ) is a mean-c0 continuous L2(P)-martingale. As
far as we know, a variation on this observation goes on one hand at least as far
back as Spitzer’s paper ([22], Proposition 2.3), on discrete (more-or-less linear)
interacting particle systems. More closely related variations can be found in the
literature on measure-valued diffusions (see Dawson and Perkins [10] for pointers
to the literature). The particular case that we need follows from (3.2) below and
the fact that mt(λ) > 0 for all t > 0, a.s. The asserted positivity follows from
Lemma 7.1 of Georgiou et al. [13] which implies that

ut (x) > 0 for all x ∈ Zd, t > 0, almost surely.(1.7)

Owing to the martingale convergence theorem, one consequence of positivity is
that

m∞(λ) := lim
t→∞mt(λ)(1.8)

exists a.s. and is finite a.s. for all λ > 0.

DEFINITION. We say that (1.2) is globally dissipative if m∞(λ) = 0 a.s.

Frequently, the probability literature refers to this property as “extinction.” We
prefer “dissipation” because a correct interpretation of “extinction,” in the present
setting, might suggest the false claim that mt(λ) = 0 a.s. for all t sufficiently large,
since as mentioned above, the strict inequality ut (x) > 0 holds for all t > 0 and
x ∈ Zd almost surely.

The principle result of this paper is the following, which essentially equates
global dissipation with the presence of strong disorder.

THEOREM 1.1. In recurrent dimensions [d = 1,2], the system (1.2) is always
globally dissipative. In transient dimensions [d ≥ 3], there is a sharp phase tran-
sition; namely, there exists a nonrandom number λc ∈ (0,∞) such that (1.2) is
globally dissipative if λ > λc and not globally dissipative if λ ∈ (0, λc).
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REMARK. The case λ = λc is open.

Theorem 1.1 is a qualitative result, but its proof has some quantitative aspects
as well. In particular, as part of the proof, we will demonstrate that there exists
a finite random variable V := V (λ,σ, c0, d) and a nonrandom positive and finite
constant v = v(λ,σ, c0, d) such that

mt(λ) ≤ V ×
{

exp
(−vt1/3)

, if d = 1,

exp(−v
√

log t), if d = 2,
(1.9)

almost surely for all t > 1. We do not know if these bounds are sharp, only that

lim sup
t→∞

1

t
logmt(λ) > −∞,(1.10)

with positive probability in all dimensions d ≥ 1 and for all λ > 0. However, our
methods are in some sense robust: We will prove that some aspects of (1.9) can be
carried out in the continuous setting of stochastic partial differential equations as
well (see Theorem 4.1).

Let us conclude the Introduction with a few remarks about the literature.
In the case that d = 1,2, the qualititative part of Theorem 1.1 is a part of the

folklore of the subject, and follows from well-known ideas about linear interact-
ing particle systems; see, for example, Liggett ([15], Theorem 4.5, page 451) and
especially Shiga [20], Remark 4.

Shiga [20], page 793, asserts that “it is plausible that the extinction occurs”
when d ≥ 3. The transient-dimension portion of Theorem 1.1 disproves Shiga’s
prediction when the noise level is sufficiently low. In the language of interacting
particle systems, Theorem 1.1 implies the “survival” of the solution to (1.2) in tran-
sient dimensions when λ is small. Our method of proof of system survival is quite
different from the more familiar ergodic-theoretic ones and worthy of attention in
its own right, for example, compare with Liggett [15], Chapter IX, Section 2.

Throughout, Lipσ denotes the optimal Lipschitz constant of σ ; that is,

Lipσ := sup
−∞<x<y<∞

∣∣∣∣σ(x) − σ(y)

x − y

∣∣∣∣.(1.11)

Of course, Lipσ < ∞ by default.

2. Some technical estimates. In this section, we record three elementary
technical facts that we will soon need. One (Lemma 2.1) is a variation on very
well-known large deviations estimates for Lévy processes. The other two (Lem-
mas 2.2 and 2.3) contain extremal bounds on subsolutions to a certain infinite
family of differential equations.

Let Y1, Y2, . . . be i.i.d. random variables in Zd such that P{Y1 = x} = τ(x) for
all x ∈ Zd . In particular, Y1 has mean zero and moment generating function

ϕ(z) := E exp(z · Y1),(2.1)

that is finite for all z in an open neighborhood of the origin of Rd .
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Let N := {N(t)}t≥0 denote an independent rate-one Poisson process, and con-
sider the compound Poisson process (sometimes also called continuous-time ran-
dom walk)

Xt :=
N(t)∑
j=1

Yj [t ≥ 0],(2.2)

where
∑0

j=1 Yj := 0. Clearly, {Xt }t≥0 is a Lévy process on Zd whose generator G
is defined in (1.1).

LEMMA 2.1. Under the preceding conditions, for every q ∈ (0,∞) there ex-
ists c ∈ (0,∞) such that

P
{‖Xt‖ > K

} ≤ 2d exp
(−cK2/t

)
,(2.3)

uniformly for all t ≥ 1 and K ∈ [0, qt].

Lemma 2.1 is basically a version of Hoeffding’s inequality [14] in continuous
time, and can be obtained from Hoeffding’s inequality by first conditioning on
N(t). Next, we describe the second, more analytic, portion of this section.

Choose and fix α, δ, γ > 0, and define F(α, δ, γ ) to be the collection of all
nonnegative continuously-differentiable functions f : R+ → R+ such that

f ′(t) ≤ −α sup
K∈[a,bt]

[
f (t) − exp(−γK2/t)

Kδ

]
for all t ≥ 1,(2.4)

and some 0 < a < b. We will reserve the notation F(α, δ, γ ) as this function class
throughout the paper.

Suppose f ∈ F(α, δ, γ ) for some finite numbers α, δ, γ > 0. Because f (t) ≥ 0
for all t > 0, we can set K := bt in the optimization problem that defines F(α, δ, γ )

in order to conclude that

f ′(t) ≤ α(bt)−δ exp
(−γ b2t

)
for all t ≥ 1.(2.5)

Consequently, f is bounded. The following gives a strong improvement in the case
that δ < 2.

LEMMA 2.2. For every δ ∈ [0,2), α,γ > 0, and f ∈ F(α, δ, γ ),

lim sup
t→∞

logf (t)

tν
< 0 with ν := 2 − δ

2 + δ
.(2.6)

PROOF. Define β := 4/(2+ δ) and observe that β ∈ (1,2] since δ ∈ [0,2). We
appeal to (2.4) with K := tβ/2 in order to see that every f ∈ F(α, δ, γ ) satisfies

f ′(t) + αt−2δ/(2+δ)f (t) ≤ α exp
(−γ tν

)
,(2.7)
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uniformly for all t sufficiently large. Define

g(t) := exp
(
θtν

)
f (t) [t ≥ 0],(2.8)

where θ is a fixed parameter that satisfies

0 < θ < min
(
γ,

α

ν

)
.(2.9)

Then, (2.7) ensures that g satisfies

g′(t) = exp
(
θtν

)[
f ′(t) + θνt−2δ/(2+δ)f (t)

]
(2.10)

< α exp
(−[γ − θ ]tν)

,

for all t sufficiently large. This implies that g is bounded, which is another way to
state the lemma. �

The preceding proof works also when δ = 2, and shows that in that case every
function f ∈ F(α,2, γ ) is bounded for every α,γ > 0. But this is vacuous, as we
have seen already.

Next, we study the case that δ = 2 more carefully and show among other things
that if f ∈ F(α,2, γ ) for some α,γ > 0, then f (t) tends to 0 faster than any neg-
ative power of log t as t → ∞.

LEMMA 2.3. For every α,γ > 0 and f ∈ F(α,2, γ ),

lim sup
t→∞

logf (t)

(log t)1/2 < 0.(2.11)

PROOF. The argument is similar to the proof of Lemma 2.2, but we need
to make a few modifications. Specifically, we now use K := t1/2(log t)1/4, and
g(t) := exp{θ√

log t}f (t) for a sufficiently small constant θ > 0. The remaining
details are routine and left to the interested reader. �

3. Proof of Theorem 1.1. The proof is split into separate parts. First, let us
define {pt }t≥0 to be the transition functions of the underlying walk X, that is,

pt(x) := P{Xt = x} for all t ≥ 0 and x ∈ Zd .(3.1)

These functions play a role in our analysis, since the solution u to (1.2) can be
written in the following integral form:

ut (x) = c0pt(−x) + ∑
y∈Zd

∫ t

0
pt−s(y − x)σ

(
us(y)

)
dBs(y);(3.2)

see Shiga and Shimizu [21]. Now we proceed with the proof, which is split into a
number of distinct steps.
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3.1. Proof in recurrent dimensions. We begin by proving (1.9); Theorem 1.1
follows immediately in recurrent dimensions, that is, when d ∈ {1,2}.

The proof in recurrent dimensions proceeds by estimating fractional moments
of mt(λ); see Chapter XII of Liggett [15] for similar ideas in the context of discrete
particle systems and Mueller and Tribe [19] in the context of continuous systems.

As was mentioned in the Introduction, it is well known that {mt(λ)}t≥0 is a
continuous L2(P)-martingale with E[mt(λ)] = c0 for all t ≥ 0. This is obtained by
summing (3.2) over x ∈ Zd on both sides in order to see that

mt(λ) = c0 + λ
∑

y∈Zd

∫ t

0
σ

(
us(y)

)
dBs(y) [t ≥ 0].(3.3)

Because σ(0) = 0 [see (1.4)], it follows that∣∣σ(z)
∣∣ ≤ Lipσ |z| for all z ∈ R.(3.4)

Therefore, the exchange of summation and stochastic integration is a standard con-
sequence of measurability and the fact that

∑
y∈Zd

∫ t

0
E

(∣∣σ (
us(y)

)∣∣2)
ds ≤ Lip2

σ

∑
y∈Zd

∫ t

0
E

(∣∣us(y)
∣∣2)

ds < ∞,(3.5)

for all t > 0. See (2.14) of Shiga and Shimizu [21] for a qualitative statement.
Indeed, Lemma 8.1 of Georgiou et al. [13] shows a sharper quantitative estimate
that, if Lip2

σ ϒ(β) < 1, then

E‖ut‖2
�2(Zd )

≤
‖u0‖2

�2(Zd )
eβt

1 − Lip2
σ ϒ(β)

,

where

ϒ(β) := (2π)−d
∫
(−π,π)d

dξ

β + 2(1 − Reφ(ξ))

and φ(ξ) := E exp(iξ · Y1) [see also (2.1)]. Here, by choosing β large enough, we
can make Lip2

σ ϒ(β) < 1. Thus, we can obtain the finiteness of the right-hand side
of (3.5).

Because of (3.5) and the Itô isometry, m(λ) := {mt(λ)}t≥0 is also an L2(P)-
martingale, and the quadratic variation process of m(λ) is described by

〈
m(λ)

〉
t = λ2

∑
y∈Zd

∫ t

0

∣∣σ (
us(y)

)∣∣2 ds = λ2
∫ t

0
‖σ ◦ us‖2

�2(Zd )
ds.(3.6)

Therefore, (1.4) and (3.4) together yield the a.s. inequalities

λ2L2
σ

∫ t

0
‖us‖2

�2(Zd )
ds ≤ 〈

m(λ)
〉
t ≤ λ2 Lip2

σ

∫ t

0
‖us‖2

�2(Zd )
ds,(3.7)

valid for all t > 0.
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Since mt(λ) ≥ ut(0), equation (7.2) of Georgiou et al. [13] guarantees that for
every T > 0 there exists CT := CT (λ) ∈ (0,∞) such that

P
{

inf
t∈[0,T ]mt(λ) < ε

}
≤ CT εlog log(1/ε)/CT for all ε ∈ (0,1).(3.8)

This shows in particular that supt∈[0,T ] |mt(λ)| ∈ Lp(P) for all p ∈ (−∞,0), T ∈
(0,∞). Consequently, we may apply Itô’s formula to see that for all η ∈ (0,1),

[
mt(λ)

]η = c
η
0 + η

∫ t

0

[
ms(λ)

]η−1 dms(λ)

(3.9)

− λ2η(1 − η)

2

∫ t

0

[
ms(λ)

]η ‖σ ◦ us‖2
�2(Zd )

‖us‖2
�1(Zd )

ds,

almost surely, where the stochastic integrals are bona fide continuous L2(P)-
martingales. In particular,

E
([

mt(λ)
]η) = c

η
0 − λ2η(1 − η)

2

∫ t

0
E

([
ms(λ)

]η ‖σ ◦ us‖2
�2(Zd )

‖us‖2
�1(Zd )

)
ds,(3.10)

for every t > 0 and η ∈ (0,1). The preceding is true also for η ≥ 1, but we care
only about values of η in (0,1).

Because of (1.4), ‖σ ◦ us‖�2(Zd ) ≥ Lσ‖us‖�2(Zd ). Therefore, the nonrandom
function t �→ E([mt(λ)]η) is continuously differentiable and solves

f ′(t) ≤ −λ2η(1 − η)L2
σ

2
E

([
mt(λ)

]η
R2

t

)
for all t > 0,(3.11)

where

Rt := ‖ut‖�2(Zd )

‖ut‖�1(Zd )

.(3.12)

For every real number K ≥ 1, let

B(K) := {
x ∈ Zd : ‖x‖ ≤ K

}
.(3.13)

There exists a positive and finite constant c := c(d) such that the cardinality of
B(K) is at least c−1Kd , uniformly for all K ≥ 1. Therefore, by the Cauchy–
Schwarz inequality,

‖ut‖2
�2(Zd )

≥ ∑
x∈B(K)

[
ut (x)

]2

≥ cK−d

( ∑
x∈B(K)

ut (x)

)2

(3.14)

= cK−d

(
‖ut‖�1(Zd ) − ∑

x /∈B(K)

ut (x)

)2

,
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for every t,K > 0. Consequently,

R2
t ≥ cK−d

(
1 −

∑
x /∈B(K) ut (x)∑
x∈Zd ut (x)

)2

(3.15)

≥ cK−d

(
1 − 2

∑
x /∈B(K) ut (x)∑
x∈Zd ut (x)

)
,

and hence (3.11) implies that

f ′(t) ≤ −cλ2η(1 − η)L2
σ

2Kd

(
f (t) − 2E

[ ∑
x /∈B(K) ut (x)

(
∑

x∈Zd ut (x))1−η

])
(3.16)

≤ −cλ2η(1 − η)L2
σ

2Kd

(
f (t) − 2E

[( ∑
x /∈B(K)

ut (x)

)η])
;

the last line holds merely because{ ∑
x /∈B(K)

ut (x)

}1−η

≤
{ ∑

x∈Zd

ut (x)

}1−η

.(3.17)

By Jensen’s inequality and Lemma 2.1, we can find c ∈ (0,∞) such that

E
[( ∑

x /∈B(K)

ut (x)

)η]
≤

(
E

[ ∑
x /∈B(K)

ut (x)

])η

=
( ∑

x /∈B(K)

c0pt(x)

)η

(3.18)

≤ (2c0d)η exp
(−cηK2/t

)
,

uniformly for all K ∈ [1, t]. Therefore,

f ′(t) ≤ −cλ2η(1 − η)L2
σ

2
sup

K∈[1,t]

(
f (t) − 2(2c0d)η exp(−cηK2/t)

Kd

)

and so with C = (2(2c0d)η)−1, we have

Cf ′(t) ≤ −cλ2η(1 − η)L2
σ

2
sup

K∈[1,t]

(
Cf (t) − exp(−cηK2/t)

Kd

)
,(3.19)

uniformly for all t ≥ 1. In other words, Cf is an element of F(α, d, cη), where α :=
cλ2η(1 − η)L2

σ /2. Because of this fact, we may employ Lemmas 2.2 and 2.3 in
order to deduce the existence of constants V := V (η,λ) ∈ (1,∞), v := v(η,λ) ∈
(0,∞) such that for all t ≥ 1,

E
([

mt(λ)
]η) ≤ V ×

{
exp

(−vt1/3)
, if d = 1,

exp(−v
√

log t), if d = 2.
(3.20)



DISSIPATION AND HIGH DISORDER 91

If U1, . . . ,Un is a nonnegative supermartingale, then Doob’s inequality tells
us that λP{max1≤j≤n Uj > λ} ≤ E(U1) for all λ > 0. Since {[ms(λ)]η}s≥t is a
continuous nonnegative supermartingale for every fixed t > 0, Doob’s inequality
and a standard approximation argument together yield

P
{
sup
s≥t

ms(λ) > a
}

≤ a−ηE
([

mt(λ)
]η)

,(3.21)

for all t, a > 0 and η ∈ (0,1). When d = 1, this and (3.20) together imply that

Pn := P
{

sup
s≥n−1

ms(λ) > exp
(−vn1/3)}

(3.22)
≤ V exp

(
v
(
ηn1/3 − (n − 1)1/3))

,

for all integers n ≥ 1. Since
∑∞

n−1 Pn < ∞, the Borel–Cantelli lemma implies the
existence of an integer-valued random variable n0 such that

sup
s≥n−1

ms(λ) ≤ exp
(−vn1/3)

for all n > n0 a.s.(3.23)

If t > n0 is an arbitrary number, random or otherwise, then we can find a unique
integer n ≥ n0 such that n − 1 ≤ t ≤ n. Then clearly

mt(λ) ≤ sup
s≥n−1

ms(λ) ≤ exp
(−vn1/3) ≤ exp

(−vt1/3)
a.s.(3.24)

This inequality yields the first bound in (1.9), whence Theorem 1.1 when d = 1.
The proof of part 2 of (1.9) is essentially the same as the proof of part 1, but

when d = 2 we use the second estimate in (3.20) instead of the first one there. This
proves Theorem 1.1 for d = 2.

3.2. Proof in transient dimensions: Existence of a unique phase transition. In
the second step of the proof, we show the existence of a unique phase transition.
In principle, the proof is valid regardless of the value of the ambient dimension.
However, it will turn out that the phase transition is nontrivial only when d ≥ 3.

Let us write the solution to (1.2) as ut (x;λ), in order to emphasize the depen-
dence of the solution on the size λ of the underlying noise. Recall that λ > 0 is a
free parameter. Therefore, the preceding constructs λ �→ u•(•;λ) as a coupling of
stochastic processes, as well.

According to a comparison theorem of Cox et al. [7], for all integers N ≥ 1, and
all real t > 0,

E exp
(
− ∑

x∈B(N)

ut (x; λ̄)

)
≥ E exp

(
− ∑

x∈B(N)

ut (x;λ)

)
,(3.25)

as long as λ̄ ≥ λ > 0. We let N ↑ ∞, and appeal to the monotone convergence
theorem, in order to see that E exp(−mt(λ̄)) ≥ E exp(−mt(λ)) for all t > 0, as long
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as λ̄ ≥ λ > 0. Now let t → ∞ in order to deduce from the dominated convergence
theorem that

E exp
(−m∞(λ̄)

) ≥ E exp
(−m∞(λ)

)
,(3.26)

as long as λ̄ ≥ λ > 0. In other words, λ �→ E exp(−m∞(λ)) is nondecreasing.
Thus,

λc := sup
{
λ > 0 : Ee−m∞(λ) < 1

} = inf
{
λ > 0 : Ee−m∞(λ) = 1

}
,(3.27)

where inf∅ := +∞ and sup∅ := 0. By the nonnegativity of m∞(λ), we can also
write

λc = sup
{
λ > 0 : m∞(λ) > 0 with positive probability

}
(3.28)

= inf
{
λ > 0 : m∞(λ) = 0 a.s.

}
.(3.29)

This proves the existence of a unique λc ∈ [0,∞] with the properties mentioned in
Theorem 1.1. The already-verified portion of the proof implies that λc = 0 when
d = 1,2. The next two parts of the proof will show the nontriviality of λc in tran-
sient dimensions; namely, that 0 < λc < ∞ when d ≥ 3. This endeavor will com-
plete the proof.

3.3. Proof in transient dimensions: Supercritical phase. In this section, we
consider only dimensions d ≥ 3, and demonstrate that m∞(λ) = 0 a.s. if λ is suf-
ficiently large. This immediately proves that

λc < ∞.(3.30)

We follow carefully Shiga’s proof of his Theorem 1.2 ([20], pages 800–806),
keeping track of the various sums and estimating them by elementary means in
order to find that for all λ sufficiently large (κ small, in the notation of Shiga) there
exists a constant c ∈ (0,∞) such that

sup
x∈Zd

P
{
ut(x) > e−t/c} ≤ ce−t/c for all t ≥ 1.(3.31)

Among other things, this readily implies the following weak formulation of a
“local extinction result”:

lim sup
t→∞

logut(x)

t
< 0 a.s. for all x ∈ Zd .(3.32)

This is another way to say that the “almost-sure Lyapunov exponent of the solution
is negative.” When σ(x) = x and G is the discrete Laplacian, that is, when τ is the
uniform distribution on the graph neighbors of the origin in Zd—(3.32) is known to
hold with a limit in place of a lim inf; see Carmona and Molchanov [5]. The most
complete results, in this case, can be found in Carmona et al. [3] and Cranston
et al. [8]. More generally still, Shiga [20] considered the same class of nonlinear
functions σ as we do, and established (3.32) with a proper limit in place of a liminf.
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We now suppose that λ is large enough to ensure the validity of (3.31), and
derive (3.30) as follows. Recall B(K) from (3.13) and let |B(K)| denote its car-
dinality. Setting A(t) = {maxx∈B(t2) ut (x) >

η

|B(t2)| }, we have by Chebyshev’s in-
equality

P
{
mt(λ) > 2η

} = P
{{

mt(λ) > 2η
} ∩ A(t)

} + P
{{

mt(λ) > 2η
} ∩ A(t)c

}
≤ P

{
A(t)

} + P
{ ∑

x /∈B(t2)

ut (x) > η

}
(3.33)

≤ P
{
A(t)

} + η−1
∑

x /∈B(t2)

E
[
ut (x)

]
,

for all η > 0 and t > 1. Since |B(t2)| ∼ const · t2d as t → ∞, Shiga’s esti-
mate (3.31) ensures that

P
{

max
x∈B(t2)

ut (x) >
η

|B(t2)|
}

= O
(
t2d)

e−t/c as t → ∞,(3.34)

whereas (3.2) and Lemma 2.1 together ensure that there exist finite and positive
constants c1 and c2 such that∑

x /∈B(t2)

E
[
ut (x)

] = c0P
{‖Xt‖ > t2} ≤ c1e−c2t ,(3.35)

for all t > 1 sufficiently large. Thus, mt(λ) → 0 in probability as t → ∞, and
hence m∞(λ) = 0 a.s. for all λ sufficiently large; (3.30) follows.

3.4. Proof in transient dimensions: Subcritical phase. We continue to assume
that d ≥ 3, and now prove that λc > 0.

Let {X′
t }t≥0 be an independent copy of the continuous-time random walk X

whose generator, we recall, is G, and define

ϒ(0) :=
∫ ∞

0
P
{
Xt = X′

t

}
dt.(3.36)

This is the total expected local time of the symmetrized walk X − X′ at the origin
of Zd . It is well known that ϒ(0) is finite because X − X′ is a d-dimensional
nontrivial random walk, and hence transient; see Chung and Fuchs [6]. In fact, if r

is the probability of return to the origin for X − X′ then ϒ(0) has an exponential
distribution with parameter 2(1 − r).

Choose and fix any λ > 0 that satisfies

λ <
[
Lipσ

√
ϒ(0)

]−1
.(3.37)

According to Proposition 8.3 of Georgiou et al. [13],

sup
t≥0

E
(∣∣mt(λ)

∣∣2) ≤ 2c2
0

(
1 + ε

1 − ε

)
,(3.38)
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where 0 < ε := λ2 Lip2
σ ϒ(0) < 1. The Paley–Zygmund inequality is the following

form of the Cauchy–Schwarz inequality:

P{W ≥ c0/2} ≥ c2
0

4E(W 2)
,(3.39)

valid for every nonnegative mean-c0 random variable W ∈ L2(P). We choose
W := mt(λ) to see that

δ := inf
t≥0

P
{
mt(λ) ≥ c0/2

}
> 0,(3.40)

as long as λ satisfies (3.37). Thus, P{m∞(λ) ≥ c0/2} ≥ δ > 0 for all such values
of λ, and hence λc ≥ [Lipσ

√
ϒ(0)]−1 > 0, as desired.

3.5. Proof of (1.10). We conclude this section by establishing the quantitative
lower bound (1.10) that is valid in all dimensions. Throughout this discussion,
λ > 0 is held fixed.

Notice that

‖σ ◦ us‖�2(Zd ) ≤ Lip2
σ ‖us‖�2(Zd ) ≤ Lip2

σ ‖us‖�1(Zd ),(3.41)

almost surely for all s > 0. Therefore, we may apply (3.10) to see that the function

f (t) := E
([

mt(λ)
]η) [t > 0](3.42)

solves the differential inequality

f ′(t) ≥ −1
2λ2η(1 − η)Lip2

σ f (t),(3.43)

for all t > 0 and η ∈ (0,1) subject to f (0) = c
η
0 . Therefore,

E
([

mt(λ)
]η) ≥ c

η
0 exp

(
−λ2η(1 − η)Lip2

σ

2
t

)
,(3.44)

for all t > 0 and η ∈ (0,1). We apply the preceding with t > 1 and η := ηt := 1/t

in order to see that

c
η
0 exp

(
−λ2 Lip2

σ

2

)
≤ c

η
0 exp

(
−λ2ηt (1 − ηt )Lip2

σ

2
t

)

≤ E
([

mt(λ)
]ηt

)
(3.45)

≤ E
([

mt(λ)
]ηt ;mt(λ) ≥ e−ct ) + e−c,

for all c > 0. We apply the preceding with an arbitrary choice of

c > 1
2λ2 Lip2

σ .(3.46)

Since ηt ∈ (0,1), Hölder’s inequality yields

E
([

mt(λ)
]ηt ;mt(λ) ≥ e−ct ) ≤ [

E
(
mt(λ)

)]1/t [P{
mt(λ) ≥ e−ct}](t−1)/t

(3.47)
= c

1/t
0

[
P
{
mt(λ) ≥ e−ct}](t−1)/t

.
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In this way, we find that, as long as c satisfies (3.46),

P
{
mt(λ) ≥ e−ct} ≥ c

1/(1−t)
0

[
exp

(
−λ2 Lip2

σ

2

)
− e−c

]t/(t−1)

(3.48)

→ exp
(
−λ2 Lip2

σ

2

)
− e−c > 0,

as t → ∞. This implies (1.10). �

4. The stochastic heat equation on the real line. We conclude this paper by
showing how one can adjust our methods in order to study continuous stochas-
tic partial differential equations (SPDEs). Indeed, let ξ := {ξt (x)}t>0,x∈R denote a
space–time white noise; that is, a centered generalized Gaussian noise with covari-
ance measure,

Cov
[
ξt (x), ξs(y)

] = δ0(t − s)δ0(x − y) (s, t > 0, x, y ∈ R).(4.1)

We consider the SPDE

ψ̇t (x) = 1
2ψ ′′

t (x) + σ
(
ψt(x)

)
ξt (x),(4.2)

valid for all t > 0 and x ∈ R, subject to a nonrandom initial profile ψ0 ∈ L∞(R),
with ψ0 ≥ 0. The nonlinearity σ is, as before, a deterministic Lipschitz-continuous
function that satisfies (1.4).

It is well known ([23], Chapter 3), that the SPDE (4.2) has a unique continuous
(weak) solution ψ that satisfies

sup
t∈[0,T ]

sup
x∈R

E
(∣∣ψt(x)

∣∣k) < ∞,(4.3)

for all T > 0 and k ≥ 1. That solution ψ is also known to have the following
integral formulation ([23], Chapter 3):

ψt(x) = (Gt ∗ ψ0)(x) +
∫
(0,t)×R

Gt−s(y − x)σ
(
ψs(y)

)
ξ(ds dy),(4.4)

where the stochastic integral is a Walsh integral ([23], Chapter 2) and G denotes
the heat kernel

Gt(x) := 1√
2πt

exp
(
−x2

2t

)
(t > 0, x ∈ R).(4.5)

Then we have the following.

THEOREM 4.1. Suppose in addition that: (i) lim sup|x|→∞ x−2 logψ0(x) < 0
and (ii) ‖ψ0‖L1(R) > 0. Then, ψt ∈ L1(R) a.s. for all t > 0, and

lim sup
t→∞

1

t1/3 log‖ψt‖L1(R) < 0 a.s.(4.6)
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PROOF. By Mueller’s comparison theorem [16, 17], ψt(x) ≥ 0 for all t ≥ 0
and x ∈ R off a single null set. Therefore,

Mt := ‖ψt‖L1(R) =
∫ ∞
−∞

ψt(x)dx.(4.7)

An a priori estimate, similar to those in Dalang and Mueller [9], can be used to
show that since σ(0) = 0 and ψ0 ∈ L1(R), ψt ∈ L1(R) a.s. for all t > 0. Moreover,
we can integrate both sides of (3.2) [dx] in order to see that t �→ Mt a.s. solves
the following for all t > 0:

Mt =M0 +
∫
(0,t)×R

σ
(
ψs(y)

)
ξ(ds dy).(4.8)

The exchange of the Lebesgue integral and the stochastic integral is justified by an
appeal to a stochastic Fubini theorem ([23], Theorem 2.6, page 296).

The identity (4.8) is the continuous analogue of (3.3), and shows that, paral-
lel to the discrete setting, the total mass M is a nonnegative, continuous L2(�)-
martingale with mean M0 and quadratic variation,

〈M〉t =
∫ t

0
ds

∫ ∞
−∞

∣∣σ (
ψs(y)

)∣∣2 dy.(4.9)

In particular, (1.4) and the Lipschitz continuity of σ together yield the following:
For all t > 0,

L2
σ

∫ t

0
‖ψs‖2

L2(R)
ds ≤ 〈M〉t ≤ Lip2

σ

∫ t

0
‖ψs‖2

L2(R)
ds a.s.(4.10)

By Itô’s formula, if η ∈ (0,1) is nonrandom, then almost surely for all t > 0,

Mη
t = Mη

0 + η

∫ t

0
Mη−1

s dMs + η(η − 1)

2

∫ t

0
Mη−2

s d〈M〉s .(4.11)

The appeal to Itô’s formula, and the fact that the preceding stochastic inte-
gral is a bona fide martingale, both follow immediately from the fact that
E(sups∈[0,t] ψ

−μ
s ) < ∞ for all t > 0 and μ > 0; see Mueller and Nualart [18].

We integrate both sides of the preceding display [dP]—in a similar vein as was
done for (3.10) and (3.11)—in order to obtain the following:

d

dt
E

(
Mη

t

) ≤ −η(1 − η)L2
σ

2
E

(
Mη

t ·Rt

)
,(4.12)

where

Rs :=
‖ψs‖2

L2(R)

‖ψs‖2
L1(R)

(s > 0).(4.13)
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Since ψs has finite (negative and positive) moments of all orders, Rs does too.
Now we choose and fix an arbitrary nonrandom constant K > 0, and argue as
in (3.15) to see that

Rs ≥ 1

2K

(
1 − 2

‖ψs‖L1(R)

∫
|x|>K

ψs(x)dx

)
,(4.14)

for all s ≥ 0. In particular,

d

dt
E

(
Mη

t

) ≤ −η(1 − η)L2
σ

4K
E

(
Mη

t

)

+ η(1 − η)L2
σ

2K
E

(
‖ψt‖η−1

L2(R)
·
∫
|x|>K

ψt(x)dx

)
(4.15)

≤ −η(1 − η)L2
σ

4K
E

(
Mη

t

) + η(1 − η)L2
σ

2K
E

([∫
|x|>K

ψt(x)dx

]η)
,

since [∫|x|>K ψt(x)dx/‖ψt‖L1(R)]1−η ≤ 1. In order to estimate the last quantity in
the preceding display, we appeal to Jensen’s inequality:

E
([∫

|x|>K
ψt(x)dx

]η)
≤

[
E

∫
|x|>K

ψt(x)dx

]η

(4.16)

=
[∫

|x|>K
(Gt ∗ ψ0)(x)dx

]η

;
valid since E[ψt(x)] = (Gt ∗ ψ0)(x) by (3.2). Now a few lines of elementary cal-
culations show that because ψ0 decays as a Gaussian function, we can find finite
and positive constants c1 and c2—independently of t—such that

E
([∫

|x|>K
ψt(x)dx

]η)
≤ c1e−c2K

2/t .(4.17)

Because of (4.15), this proves that

f (t) := E
(‖ψt‖η

L1(R)

)
(4.18)

satisfies the pointwise inequality

f ′(t) ≤ −η(1 − η)L2
σ

4K
f (t) + c1η(1 − η)L2

σ

2K
exp

(
−K2

c2t

)
.(4.19)

Consequently, there exist finite and positive constants C, α, and γ such that f ∈
F(α,1, γ ), whence logf (t) ≤ −Ct1/3 for all t � 1, thanks to Lemma 2.2, and
hence that

E
(‖ψt‖η

L1(R)

) ≤ C1 exp
(
− t1/3

C1

)
for all t ≥ C1.(4.20)

Since t �→ ‖ψt‖η

L1(R)
is a nonnegative supermartingale [see (4.8)], we apply

Doob’s inequality and a Borel–Cantelli argument to complete the proof. �
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